Czyszczenie danych w Pythonie. Receptury
Czyszczenie danych w Pythonie. Receptury

Czyszczenie danych w Pythonie. Receptury

Wydawnictwo: Helion
EAN: 9788328380295
Data wydania: 2021
Ilość stron: 328
Wydawnictwo: Helion
Nowość
49.49
PLN
79,00 zł
49,49 zł
Oszczędzasz: 37% (30 zł)
24h
Najtańsza wysyłka od: 9,99 zł

Koszt dostawy:

InPost Paczkomaty 24/7 od 9,99 zł
Poczta Polska Odbiór w punkcie od 10,99 zł
Poczta Polska doręczenie pod adres od 11,99 zł
InPost - przesyłka kurierska od 12,99 zł
FedEx - przesyłka kurierska od 15,99 zł

Opis produktu

Przetwarzanie dużych ilości danych daje wiedzę, która leży u podstaw istotnych decyzji podejmowanych przez organizację. Pozwala to na uzyskiwanie znakomitych efektów: techniki wydobywania wiedzy z danych stają się coraz bardziej wyrafinowane. Podstawowym warunkiem sukcesu jest uzyskanie odpowiedniej jakości danych. Wykorzystanie niespójnych i niepełnych informacji prowadzi do podejmowania błędnych decyzji. Konsekwencją mogą być straty finansowe, stwarzanie konkretnych zagrożeń czy uszczerbek na wizerunku. A zatem oczyszczanie jest wyjątkowo ważną częścią analizy danych.
Ta książka jest praktycznym zbiorem gotowych do użycia receptur, podanych tak, aby maksymalnie ułatwić proces przygotowania danych do analizy. Omówiono tu takie kwestie dotyczące danych jak importowanie, ocena ich jakości, uzupełnianie braków, porządkowanie i agregacja, a także przekształcanie. Poza zwięzłym omówieniem tych zadań zaprezentowano najskuteczniejsze techniki ich wykonywania za pomocą różnych narzędzi: Pandas, NumPy, Matplotlib czy SciPy. W ramach każdej receptury wyjaśniono skutki podjętych działań. Cennym uzupełnieniem jest zestaw funkcji i klas zdefiniowanych przez użytkownika, które służą do automatyzacji oczyszczania danych. Umożliwiają one też dostrojenie procesu do konkretnych potrzeb.
W książce znajdziesz receptury, dzięki którym:
- wczytasz i przeanalizujesz dane z różnych źródeł
- uporządkujesz dane, poprawisz ich błędy i uzupełnisz braki
- efektywnie skorzystasz z bibliotek Pythona
- zastosujesz wizualizacje do analizy danych
- napiszesz własne funkcje i klasy do automatyzacji procesu oczyszczania danych
Prawdziwą wartość mają tylko oczyszczone i spójne dane!

Recenzje

Średnia ocena:
Łącznie oddano głosów:
Data ostatniej:

Twoja ocena:

Twoje imię lub pseudonim:
Podaj swój adres e-mail lub zaloguj się, aby brać udział w konkursach dla najlepszych recenzentów.
Twój adres e-mail:
Przed dodaniem recenzji zapoznaj się z regulaminem.